
CHEMICAL EQUILIBRIUM

Graphical Analysis

Concentration vs time

Rate vs Time

For a reaction, $mA + nB \rightleftharpoons pC + qD$

$$k_f = [C]^p [D]^q \text{ and } k_b = [A]^m [B]^n$$

k_f = rate constant of forward reaction

k_b = rate of backward reaction

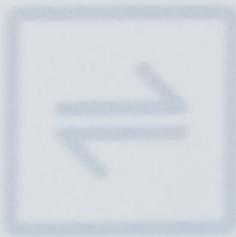
At Equilibrium, $k_f = k_b$ and $k_f / k_b = K_{eq}$

$$K_c = \frac{[C]^p [D]^q}{[A]^m [B]^n}$$

[] = represents concentration

$$K_p = \frac{(p_C)^p (p_D)^q}{(p_A)^m (p_B)^n}$$

p = partial Pressure
also, $p = x \times P_T$


Relation between K_c , K_p , K_x

$$K_p = K_c (RT)^{\Delta n_g} = (P_T)^{\Delta n_g} K_x$$

Case I : $n_p > n_r$; $\Delta n_g > 0$; $K_p > K_c$

Case II : $n_p < n_r$; $\Delta n_g < 0$; $K_p < K_c$

Case III : $n_p = n_r$; $\Delta n_g = 0$; $K_p = K_c$

K also confirms the stability of Reactants and Products

$K \uparrow$ = Products Stable

$K \downarrow$ = Reactants Stable

Factors Affecting K

- Temperature (According to Van't Hoff equation)

$$\log \left(\frac{K_2}{K_1} \right) = \frac{\Delta H^\circ}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right] \quad (\text{Here } T_2 > T_1)$$

$\Delta H = +ve$ (Endothermic); $K_2 > K_1$

$\Delta H = -ve$ (Exothermic); $K_1 > K_2$

- Stoichiometry of a reaction and representation

For a reaction $aA + bB \rightleftharpoons cC + dD$, Eq. Constant = K

1. Multiply reaction by 2 : K^2

2. Divide Reaction by 2 : $K^{1/2}$

3. Reverse the reaction : $1/K$

4. Add Equation with Eq. constant $K_2 = K \cdot K_2$

5. Subtract Equation with Eq. constant $K_2 = K/K_2$

Reaction Quotient

For a reaction $aA + bB \rightleftharpoons cC + dD$, Eqm Constant : K

At a stage other than eqm.

$$Q_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$Q > K$: Form Reactants

$Q < K$: Form Products

$Q = K$: Equilibrium

Degree of Dissociation ($0 < \alpha < 1$)

Fraction of initial molecules that are converted at eqm.

Case I : $aA \rightleftharpoons bB$ If Initial moles = 2

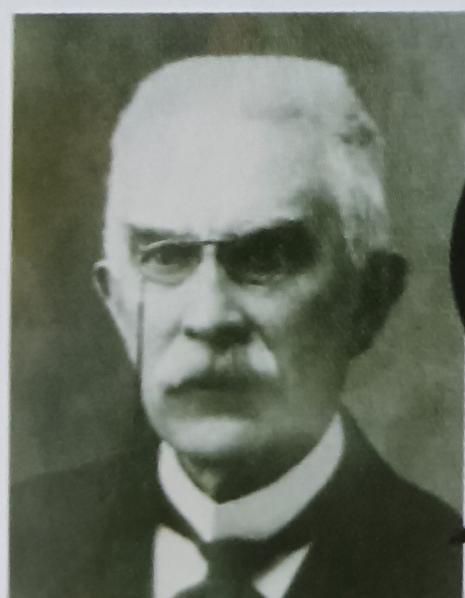
n (Eq.) $2-ax$ bx Degree of diss. $\alpha = ax/2$

Case II : $aA + bB \rightleftharpoons cC + dD$ If Initial A=3 ; B=2

n (Eq.) $3-ax$ $2-bx$ cx dx DOD (α_A) = $ax/3$

Relation between Standard Gibbs Free Energy and K

$$\Delta G^\circ = -2.303RT \log K = -RT \ln K$$


$\Delta G^\circ < 0$	$K > 1$	Spontaneous Reaction
$\Delta G^\circ > 0$	$K < 1$	Non-Spontaneous Reaction
$\Delta G^\circ = 0$	$K = 1$	Equilibrium

Le-Chatlier's Principle

When a simple system in equilibrium is subjected to a change in Conc., T, V, or P.

- (1) the system changes to a new equilibrium
- (2) this change partly counteracts the applied change.

Concentration	↑ Reactants - Forward Reaction ↑ Products - Backward Reaction
Temperature	Endothermic : ↑ Temp - Forward Exothermic : ↑ Temp - Backward
Catalyst	BORRINGGG....NO EFFECT
Pressure	↑ Pressure : Towards Lower moles ↓ Pressure : Towards Higher moles
Inert Gas	At Constant P, Towards Higher Moles At Constant V, NO Effect

Are you Getting
my point?

Henry Louis Le
Chatelier